
Statistics & Probability Letters 11 (1991) 125-131 

North-Holland 

February 1991 

On a modified binomial distribution 
of order k 

Wen-Tao Huang 
Institute OJ Statistical Scrence, Academa S~mca, Taipei, Taiwan, R.O.C. 

Chiou-Shiang Tsai 
Institute of Applied Mathematics, National Tsing Hua University, Hsinchu, Taiwan, R. 0.C. 

Received March 1989 

Revised February 1990 

Abstract: We propose a modified model of the binomial distribution of order k and obtain its probability generating function (pgf). 

We also extend the modified model and compute its pgf. The Poisson limit is also shown under some conditions. 
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1. Introduction 

Discrete distributions of order k have recently attracted special attention. Since Philippou and Muwafi 
(1982) and Philippou et al. (1983) initiated some study in this direction, a series of papers on this subject 
have been published. Among them, Aki, Kuboki and Hirano (1984) calculated the probabilities and 
moments of various discrete distributions of order k such as geometric, negative binomial, Poisson and 
logarithmic series distribution. In Hirano (1984) a binomial distribution of order k was defined and a 
closed form of the exact distribution has been derived. This result was also independently given in 
Philippou and Makri (1986). Later, Aki (1985) considered some extensions of geometric, negative 
binomial, Poisson, logarithmic series and binomial of order k on a binary sequence. More recently, 
Xekalaki, Panaretos and Philippou (1987) considered some mixtures of distributions of order k and 
obtained some distributions of order k such as the beta-geometric distribution and the beta-negative 
binomial distribution. The limiting distributions lead to the Poisson and gamma-compound Poisson 
distributions of order k. Philippou (1988) also considered some extensions of some discrete distributions of 
order k to be multiparameter distributions of order k. Panaretos and Xekalaki (1986a) studied the cluster 
binomial distribution and its relation to generalized Poisson distributions. 

On the other hand, recently, Panaretos and Xekalaki (1986b) and Xekalaki and Panaretos (1989) 
proposed an alternative approach to generalize the classic discrete distributions and provide interpreta- 
tions of some important generalized discrete distributions via considering various urn sampling schemes. 
They generalized most of the classic discrete distributions and found relationships among them. When a 
class of generalized discrete distributions is set up via properly defining a certain urn sampling scheme, a 
wider class of distributions is obtained by extending the parameter space. 

Consider an urn that contains (Y balls marked 0 and /3, balls marked i (i = 1, 2,. . . , I). Each time a ball 
is randomly drawn from the urn and its number is recorded. Then, y balls (including the one just drawn) 
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are added to the urn before the next ball is drawn. In a total time of n (prefixed) samplings, let X denote 
the number of runs of O’s with length k. For a prefixed event E, let N denote the total number of drawings 
so that for the first time E occurs (an inverse sampling). Panaretos and Xekalaki (1986) made a detailed 
study of the distributions of X and N under various conditions on I, (Y, p,, y and E. For instance, when 
I = 1, y 2 1, X becomes a generalized Polya variable. When y = 1 and E denotes the event that there are 
m O’s, then N becomes a generalized negative binomial variable. If again, the values of the involved 
rational parameters 8 = ( ,/a)m, 0, = (/3,/S)-‘, withS=a+CP, (i=1,2,...,1)areextendedtobeanyreal 
values in (0, 1) with 0 + 10, = 1, then, a wider class of generalized distributions is obtained which is 
defined as the cluster negative binomial (see Xekalaki and Panaretos (1989)). 

According to this point of view, if we permit y to take negative integer values with some restrictions or 
allow y to be dependent on values of (Y, and&,, where LY, and p,, denote, respectively, the values of (Y and 
/3, at the jth sampling, we may obtain a wider class of generalized distributions. 

In this article, we focus on the binomial model of order k and consider a modified model of order, (k,, 

k2) which is defined in Section 2. It can be seen that this modified model includes the binomial model of 

order k in Hirano (1984) as a special case of order (0, k) or (k, 0). This modification can be extended 

along the lines studied in Aki (1985) for a binary sequence associated with a sequence { p,, pz,. . . } with 
values in (0, 1). However, we extend the model in another direction in Section 3. 

2. Binomial of order (k,, k2) 

Consider a box with security installation. Usually there is a wheel attached to the box. Each time, the 
wheel either turns one step left (counter clockwise), or one step right (clockwise). If we consider turning 
left as a failure (F) and turning right as a success (S), then the random walk on a circle results in a binary 
sequence. The box can be opened if for the mth time k, consecutive F’s followed by k, consecutive S’s 
have been produced. Here m, k, and k, may be some unknown parameters needed to be guessed or 
determined. If n, m, k, + k,, and p are given, it may be interesting to ask what values of k, and k, make 
B k,,k,(m; n, p) minimum. 

For another example, in a biological context, consider a process of random mating. As a result, in 

chromosomes of each cell of an offspring, there exists a certain arrangement of genes. Suppose two 
categories of genotypes (A and B) are considered. A certain arrangement of genotypes, say k, A-genotype 
followed by k, B-genotype, reflects a certain characteristic, for example, a defect or symptom etc. Then, it 
may be interesting to evaluate the probability of such a characteristic. 

Consider now the urn sampling scheme described in the previous section with I = 1, y = 0 or y = 1. Let 
Y denote the total number of events which consists of exactly k, O’s followed by exactly k, 1’s. Then, the 
limiting distribution of Y becomes N(n; k,, k,), which is defined in the following, when (Y + cc and 
(~/(a + j3,) +p (0 < p < 1). See Panaretos and Xekalaki (1986) for the case of a binomial of order k. 

Definition 1. In a sequence of Bernoulli trials with probability p (a success denoted by S and a failure by 
F), a (k,, k,)-event is said to have occurred if for the first time the event that k, consecutive F followed 
by k, consecutive S (i.e. FF . . FSS.. S.. _) has occurred in the trial, where (k,, k,) is any pair of 
non-negative integers (including 0) excluding (0, 0). 

For convenience, let N(n; k,, k,) denote the number of occurrences of a (k,, k,)-event in n trials. The 
distribution of N(n; k,, k2) will be referred to as the binomial of order (k,, k2) and will be denoted by 

B k,,!& n, P). Cl early, it is seen that B,,,(. ; n, p) or Bk,a(.; n, l-p) are identical to B,(.; n, p) in Hirano 

(1984) or Philippou and Makri (1986). 
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In the following, we derive the probability generating function of N(n; k,, k2). Unfortunately, the 
method we use can not be applied for cases of (k,, k2) with k, = 0 and k, >, 2. The techniques used for 

deriving Bk(. ; n, p) given in Hirano (1984) or Philippou and Makri (1986) fail for our model. 

Lemma 1. 

(i> BX,& n, P> = 0 ifn<k,+kz, x>O, 

= 1 ifn <k, + k,, x = 0, 

= qbpb ifn=k,+k,, x=1, 

= 1 - q~IpX’ ifn=k,+k,, x=0. 

(ii) B,,,,>(O; n, P> = B,,,, &O; n - 1. p) - qX’p”B,,,,2(0; n - k, - k,, p) 

for n > k, + k,. 

n-k,pk2 

(iii) B~,.r,(x; n, P> = 1 q’V+B~,.& - 1: j, P)B~,,JO; n - k, -k, -,j) 
J=o 

for n 2 k, + k,, x>,l,q-1-p. 

(iv) &,.~,(x; n + 1, P) = Br,.x,(x; n, P) + qi’pi2[Bi,,A,(x - 1; n - k, -k, + 1, p) 

-BI\,.AL( x; n-k,-k,+l, p)] 

for n 2 k, + k,, 1 < x G 
[ 1 k,:k; ’ 

where [a] denotes the lurgest integer not exceeding u. 

Proof. (i) and (ii) are straightforward. To see (iii), consider a (k,, k,)-event that occurs between the jth 
and the (j + k, + k, - 1)th Bernoulli trials, and suppose that there are x - 1, (k,, k,)-events which have 
occurred before the jth trial and that no (k,, kz)-events occur after the (j + k, + k2 - 1)th trial, where 

j=l,2 , . . . , n - k, - k, + 1. To see (iv), suppose there are x (k,, k,)-events that occur in n + 1 trials and 
consider the following situations. 

Case 1. Suppose there are x (k,, k,)-events in n trials. Then, there are either x (k,, k,)-events in n 

trials or x + 1 (k,, 

qh1pk2%,.~, 

k,)-events in n + 1 trials. The probability is then given by B/,,,/,>(x; n, p) - 

(x; n -k, -k, + 1, p). 
Case 2. There are x - 1 (k,, k,)-events in the first n - k, - k, + 1 trials and there are x (k,, k,)-events 

in n + 1 trials. This results in a probability qA1pXzBl(,,Az(x - 1; n - k, - k, + 1, p). q 

Let QE(t; k,, k2) denote the probability generating function (pgf) of N(n; k,, k2). Then, we have the 
following main result. 

Theorem 1. 

Qn(t; k,, k,) = i C;,[ pA2qA’(t- l)]‘pa’ 
1= I,, 

where i, = -[ -n/(k, + k2)], a, = ((k, + k,)i - n)/(k, + k, - 1) if the right hand side is an integer, and 
a, = - 1 otherwise. Define CE, = 0, for any u. 
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Proof. By Lemma 1, we have 

an,(t; k,, k2) = 1 

=l+q”‘p”z(t-1) 

= cq_,(t; k,, k*) + qk’p”‘(t - 

Define 

@(z; t, k,, k,) = 5 Qn(t; k,, kZ)zn. 
n=O 

It follows from (2.1) that 

ifO<n<k,+k,, 

if n=k,+k,, (2.1) 

l)@_k,-k,(t; k,, k,) if n > k, + k,. 

@(z; t, k,, k2) = 1 +z@(z; t, k,, k2) + (t- l)q”lpk2zk1+k2@(z; t, k,, k,). 

Solving for @(z; t, k,, k,), we have 

@(z; t, k,, k,) = 
1 

I _z_ (t- l)qklpk2Zkl+k2 

(2.2) 

(2.3) 

where t and z lie in 

D= {ItI 

Again, note that the 

co 

2 {z-t 

the domain 

< I, 1 z I< 1 and 1 z + (t - l)qh1pk2~h1+k2 1-c I}. 

right hand side of (2.3) is equal to 

(t - I)qklpkz~kltk2} n for (z, t) E D. 
n=O 

Collect all coefficients of z” in the polynomial expansion to obtain Gn(t; k,, k2). This completes the 
proof. 0 

Let M,,(t; k,, k,) denote the factorial moment generating function of N(t; k,, k2). Then we have, by 
Theorem 1, 

M,(t; k,, k2) = @,,(t+ 1; k,, k2) = c C&J~+~)‘-~’ 
;=I” 

(2.4) 

where i, and (Y, are defined in Theorem 1. For given i, let i - (Y, = m, a positive integer. Then, the m th 
factorial moment of N(n; k,, k2) is given by 

p(m) = c:,( pkzqkl) mm! = (n - m(k, + k, - l))(m)(pk2qkl)m, 

noting that i - (Y, = m implies i = n - m(k, + k, - l), where a(“) = a(a - 1) . . . (a - m + 1). Note that 

(n - m( k, + k, - l))‘“‘/n m -+ 1 as n + co. On the other hand, the mth factorial moment of the Poisson 

distribution with parameter X is given by A”‘. Also note that the Poisson distribution is uniquely 

determined by its moments. Instead of the moment of order m, we consider the mth factorial moment of 
N(n; k,, k,). It follows then from Kendall (1967): 

Corollary 1. The distribution of Bk,,kz(. ; n, p) converges to the Poisson distribution with parumeter h if 

n(l-p)“lpk2+h asn+coandp+O. 0 

128 



Volume 11, Number 2 STATISTICS & PROBABILITY LETTERS February 1991 

Finally, we consider the waiting time of N(n; k,, k,). Let S,, denote the waiting time of the nth 

occurence of a (k,, k,)-event. Then 

S,, = T, + T, + . . . + T, (2.5) 

where 7; is k, + k, plus the number of trials between the (i - l)th and ith occurrence of a (k,, k,)-event. 

Itcanbeseenthat T,, T, ,..., T, are Cd. Let Tdenote an i.i.d. copy and let +(t, k,, k2) denote the pgf of 

T. Then. we have: 

Corollary 2. 

6) +(r; k,, k,) = 
qhpk,tk, +k, 

1 _ t + qhpbtW, 

(ii) ET= (qk1pk2)-! 

(iii) Var T= { qklpk2(1 - 2k, - 2k,) + 1}/(qk’pk2)2. 

Proof. (ii) and (iii) follow directly from (i). To show (i), note that 

P(T=n) =0 if n<k,+k,, 

= qhpb if n=k,+k,, 

= qk1pk2Bk,,k2(0; n - k, - k,, p) if n>k,+kk,. 

n=k,+k, 

= tk1+k2qk1pX2 2 @,,(O; k,, k,)t” 
n=O 

= tk1+k2qk1pk2@(t; 0, k,, k2) (by (2.2)) 

= qk,pk,tk, +k 2/(1 - t + qk1pk2tk1+kz) (by (2.3)). •I 

3. An extension 

If we consider a (k,, k,)-event as a unit and generalize the concept of a run to be an event which consists 
of exactly k, such units, then we can define the following event which is more general. 

Definition 2. A (k,, k,; k,)-event is said to have occurred if there are exactly k, consecutive (k,, 
k,)-events that occur in n Bernoulli trials. 

Obviously, a (k,, k,; 1)-event is actually a (k,, k,)-event as defined in Definition 1. Any event can be 
considered as a composition of a ( k,l, k,,; k,,)-event followed by a (k,, ,,,, k,+,,2; k,, ,,,)-event 
corresponding to some sequence ((k,, , k,,, kr3), i = 1, 2,. . . , I}. 

Let N,,(n; k,, k,) denote the number of occurrences of a (k,, k,; k,)-event in n Bernoulli trials. We 
note that 

Pr{ N,,(n; k,, k,)=r} =Pr{rk 3 < N(n; k,, k,) < (r-t L)k,} 

= Pr{ Srh, Gn> -Pr{S(.+l)k3~n} 
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where S,, is the waiting time defined by (2.5). Let p,,, = Pr{ N,,(n; k,, k,) = r} for fixed k,, k, and k,. 
Then, it can be obtained that (see, for example, Feller (1968)) 

where 4(.) is the pgf of T given by Corollary 2. Let 6,,(t) (= E~c;=op,,,,t’) denote the pgf of N,?(n; k,, k,) 
for fixed k,, k, and k,. Then, 

Ee&(+” = E E P,,/z” 
n=O r=O 

= : t’ : pn.,zn 
r=O fl=O 

= r~OWAJ(z: k,, k,)[l - $hl(z; k,, k&(1 - z) (by (3.1)) 

= {I -+hl‘l(z; k,, k,)}/{(l -z)[l -t&“(z; k,, kz)]} 

We therefore conclude: 

Theorem 2. The pgf of N, ,( z; k,, k2) is the coefficient of z” in the polynomiul expunsion of the ratiionul 
function 

{l-&(z: k,, k,)}/{ (1 - z)[l - t&(z; k,, k,)] } > 

where +( .) is given by Corollury 2. q 

Corollary 3. The first and the second moment of N,,( n; k,, k2) are, respectively, the coefficient of z” in the 

polynomial expansions of the following ratio& functions: 

#?(z; k,, k,),‘(l - r)[l -g+(z; k,, k,)] 

[4h”i(z; k,, k2) ++22”j(z; k,, k,)]/(l -z)[l -4h1(z; k,, k2)12. 0 

Proof. Applying analogous arguments as above, we can conclude the results. 

Usually such a coefficient of z” can be obtained by differentiating the associated rational function with 
respect to z and then taking z = 0. 
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